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Introduction

Fine-resolution natural resource maps e�fectively

represent spatial patterns and can be �lexibly aggregated

to arbitrary map subregions by computing spatial

averages or totals of pixel-level predictions. However,

generalized model-based uncertainty estimation for

spatial aggregates requires computationally expensive

processes like iterative bootstrapping and computing

spatial covariances between residuals (McRoberts et al.

2022; Wadoux and Heuvelink 2023). Here we propose that

simple models relating subregion characteristics to

subregion uncertainty can expedite the entire process.

Methods

Following McRoberts et al. (2022), we produced estimates

of standard error (SE) associated with spatial averages of

aboveground biomass (AGB) predictions developed in

Johnson et al. (2023) for a strati�ed random sample of

ownership parcels in New York State (n = 2224). We

incorporated reference data uncertainty (Radtke et al.

2015; Yanai et al. 2023) and model uncertainty through a

1000-iteration bootstrap procedure. We accounted for

residual variability and spatial correlation of residuals by

mapping residual variance and �tting a semivariogram to

a random sample of spatial residuals.

A�er estimating SEs for all parcels, we randomly divided

them into training (80%; n = 1779) and testing (20%; n =

445) sets. We �t a log-log regression model relating parcel

characteristics (area, perimeter, forest cover, AGB) to

parcel SE with the training set and assessed the model’s

accuracy against the testing set.

Results

Parcel standard error (SE) decreased as a function of

parcel size (Figure 1). This high-level relationship serves

as the basis for e��ciently communicating uncertainty

results to map users who are interested in arbitrary

subregions of the map. We can infer that the trend in

Figure 1 is largely driven by the decreasing contribution

of residual spatial autocorrelation with increased parcel

size (Figure 2).
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Figure 1: Parcel standard error (SE) distributions by acre group for the training partition of the
parcel sample. Gray shaded areas represent smoothed kernel density estimates of SEs, black dots

identify median values, and colored bars show 25%, 50%, 95%, and 100% intervals.
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Figure 2: Uncertainty contributions (% of total variance) as a function of parcel size (acre group)
for the training partition of the parcel sample. For each acre group and source of uncertainty, the
average proportion of the total variance was summarized across all parcels within the acre group.

The log-log regression accurately predicted SEs for

parcels in the test set (Figure 3; RMSE 2.38, MAE 1.38, ME

-0.05, R2 0.92). These results suggest that we can estimate

the SEs associated with spatial averages of aboveground

biomass predictions for any subregion of NYS with a

fraction of the computing resources and data required to

do so from scratch.
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Figure 3: Computed standard error (SE) vs log-log regression predicted SE for the testing partition
of the parcel sample. 1:1 line in red.
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Uncertainty estimation for

arbitrary subregions of

natural resource maps

is expensive. Simple models

relating subregion

characteristics to standard

error estimates can help

expedite the process.
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